A reduced-order model from high-dimensional frictional hysteresis.

نویسندگان

  • Saurabh Biswas
  • Anindya Chatterjee
چکیده

Hysteresis in material behaviour includes both signum nonlinearities as well as high dimensionality. Available models for component-level hysteretic behaviour are empirical. Here, we derive a low-order model for rate-independent hysteresis from a high-dimensional massless frictional system. The original system, being given in terms of signs of velocities, is first solved incrementally using a linear complementarity problem formulation. From this numerical solution, to develop a reduced-order model, basis vectors are chosen using the singular value decomposition. The slip direction in generalized coordinates is identified as the minimizer of a dissipation-related function. That function includes terms for frictional dissipation through signum nonlinearities at many friction sites. Luckily, it allows a convenient analytical approximation. Upon solution of the approximated minimization problem, the slip direction is found. A final evolution equation for a few states is then obtained that gives a good match with the full solution. The model obtained here may lead to new insights into hysteresis as well as better empirical modelling thereof.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-state hysteresis model from high-dimensional friction

In prior work (Biswas & Chatterjee 2014 Proc. R. Soc. A 470, 20130817 (doi:10.1098/rspa.2013.0817)), we developed a six-state hysteresis model from a high-dimensional frictional system. Here, we use a more intuitively appealing frictional system that resembles one studied earlier by Iwan. The basis functions now have simple analytical description. The number of states required decreases further...

متن کامل

Electromagnetic Analysis of Hysteresis Synchronous Motor Based on Complex Permeability Concept

Hysteresis motor is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials to make torque. There are different methods to model this kind of motor and take into account the magnetic hysteresis characteristic of the rotor hysteresis ring. In this investigation the application of complex permeability concept is implemented to model the hysteresis loop and t...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Modified Maxwell-slip Model of Presliding Friction

The distributed Maxwell-slip model provides a convenient way to describe the presliding friction behavior. The modified single-state Maxwell-slip (MMS) model is proposed with the main benefit to require two concentrated parameters only when describing the smooth hysteresis of the presliding friction. The model is rate-independent at both, saturated and unsaturated hysteresis, and is consistent ...

متن کامل

Dynamic Analysis of Presliding Friction via Skeleton Method

Friction, which evidently appears in any mechanical systems incorporating parts with relative motion, manifests itself as material nonlinearity. Depending on its application, friction can be a desirable thing or a drawback in the system. In order to optimally utilize or compensate for the frictional effect in a system, characterization of the frictional behaviour is very crucial. The classical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Mathematical, physical, and engineering sciences

دوره 470 2166  شماره 

صفحات  -

تاریخ انتشار 2014